Estamos em manutenção no período de 06/06/2025 até 30/06/2025.
 

Detecção de Cross-Site Scripting em páginas Web

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal do Amazonas

Resumo

Web applications are currently an important environment for access to services available on the Internet. However, the security assurance of these resources has become an elementary task. The structure of dynamic websites composed by a set of objects such as HTML tags, script functions, hyperlinks and advanced features in web browsers may provide numerous resources and interactive services, for instance e-commerce, Internet banking, social networking, blogs, forums, among others. On the other hand, these features helped to increase the potential security risks and attacks, which are the results of malicious codes injection. In this context, Cross-Site Scripting (XSS) is highlighted at the top of the lists of the greatest threats to web applications in recent years. This work presents a method based on supervised machine learning techniques to detect XSS in web pages. A set of features extracted from URL contents and web document are employed in order to discriminate XSS patterns and to successfully classify both malicious and non-malicious pages

Descrição

Palavras-chave

Cross-site Scripting, Segurança de aplicações web, Detecção de anomalia, Aprendizagem de máquina, Cross-site scripting, Web application security, Anomaly detection, Machine learning

Citação

NUNAN, Angelo Eduardo. Detecção de Cross-Site Scripting em páginas Web. 2012. 104 f. Dissertação (Mestrado em Informática) - Universidade Federal do Amazonas, Manaus, 2012.

Avaliação

Revisão

Suplementado Por

Referenciado Por